登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于变分模态分解的超声检测信号降噪研究

基于变分模态分解的超声检测信号降噪研究

135    2019-12-30

免费

全文售价

作者:王大为1,2, 王召巴1, 李鹏3, 陈友兴1, 李海洋1

作者单位:1. 中北大学信息与通信工程学院, 山西 太原 030051;
2. 山西师范大学物理与信息工程学院, 山西 临汾 041000;
3. 西安近代化学研究所, 陕西 西安 710065


关键词:无损检测;超声信号降噪;变分模态分解;超声信号仿真模型


摘要:

为解决超声检测信号的降噪问题,该文基于变分模态分解能将信号分解为一系列窄带模式,而高斯噪声则被分解为整个频带内若干个宽带模式,提出一种超声检测信号降噪方法。该方法通过变分模态分解,计算各模态带宽和中心频率,选择信号模态,根据信号模态重构无噪信号4步实现对超声检测信号的降噪;通过仿真实验表明该文方法可以将含噪超声信号分解为信号模态和噪声模态,去除噪声模态后可显著提升信噪比;对信噪比为10 dB的含噪信号经该文方法处理后得到的重构信号和原始无噪信号的均方误差为0.000 7,波形相似系数为0.994 0,重构信噪比为19.237 4 dB。此外,为提高超声信号仿真模型和实际测量到的超声信号的匹配度,该文提出一种改进的超声信号模型。实验表明该模型和实测超声信号更接近,其均方误差为0.008 3,波形相似度为0.973 3。


Study on ultrasonic detection signal denosing based on variational mode decomposition
WANG Dawei1,2, WANG Zhaoba1, LI Peng3, CHEN Youxing1, LI Haiyang1
1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
2. College of Physics and Information Engineering, Shanxi Normal University, Linfen 041000, China;
3. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
Abstract: To solve the problem of noise reduction of ultrasonic detection signal, a novel method of noise reduction for ultrasonic detection signal based on variational mode decomposition was proposed in this paper. The proposed method was introduced in four parts:variational mode decomposition, calculation of the bandwidth and center frequency of each mode, signal mode selection and reconstruction of noise-free signal according to signal mode. The simulation results showed that the proposed method could decompose the noisy ultrasonic signal into signal mode and noise mode, and the signal-to-noise ratio could be significantly improved after removing the noise mode. For example, this method was employed to process noisy signal with signal-to-noise ratio of 10 dB, and the mean square error (MSE), normalized correlation coefficient (NCC) and reconstructed signal-to-noise ratio (ESNR) of reconstructed signal and original noise-free signal were 0.000 7, 0.994 0 and 19.237 4 respectively. Additionally, an improved ultrasonic signal model was proposed in order to enhance the similarity between the simulation model of ultrasonic signal and the measured ultrasonic signal. The experiment results showed that compared with the exponential model, the proposed model could better simulate the measured ultrasonic signal, with a with a mean square error of 0.008 3 and normalized correlation coefficient of 0.973 3.
Keywords: nondestructive test;ultrasonic signal denosing;variational mode decomposition;simulation model of ultrasonic signal
2019, 45(12):106-111  收稿日期: 2019-05-14;收到修改稿日期: 2019-06-26
基金项目: 国家自然科学基金(11604304);山西省科技攻关项目(201603D121006-1);山西省自然科学基金(201701D221127,201801D121150);山西省回国留学人员科研资助项目(2016-084);山西省高等学校科技创新项目(201657)
作者简介: 王大为(1989-),男,山西新绛县人,讲师,博士,研究方向为信号检测与信息处理
参考文献
[1] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544
[2] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings A, 1998, 454(1971):903-995
[3] 刘备, 胡伟鹏, 邹孝, 等. 基于变分模态分解与多尺度排列熵的生物组织变性识别[J]. 物理学报, 2019, 68(2):259-267
[4] 谢平, 杨芳梅, 李欣欣, 等. 基于变分模态分解-传递熵的脑肌电信号耦合分析[J]. 物理学报, 2016, 65(11):285-293
[5] 路敬祎, 马雯萍, 叶东, 等. 基于VMD的声音信号增强算法研究[J]. 机械工程学报, 2018, 54(10):10-15
[6] ZHANG X L, JIA R S, LU X M, et al. Identification of blasting vibration and coal-rock fracturing microseismic signals[J]. Applied Geophysics, 2018, 15(2):280-289
[7] ZHAO H, LI L. Fault diagnosis of wind turbine bearing based on variational mode decomposition and Teager energy operator[J]. IET Renewable Power Generation, 2017, 11(4):453-460
[8] ZHANG S, WANG Y, HE S, et al. Bearing fault diagnosis based on variational mode decomposition and total variation denoising[J]. Measurement Science & Technology, 2016, 27(7):075101
[9] FULIN J. Nondestructive testing report writing[J]. Materials Evaluation, 2017, 75(4):456-460
[10] BURKOV M V, EREMIN A V, LYUBUTIN P S, et al. Applying an ultrasonic lamb wave based rechnique to testing the condition of V96ts3T12 aluminum alloy[J]. Russian Journal of Nondestructive Testing, 2017, 53(12):817-829
[11] LU Z, YANG C, QIN D, et al. Estimating the parameters of ultrasonic echo signal in the Gabor transform domain and its resolution analysis[J]. Signal Processing, 2016, 120(3):607-619
[12] BERTSEKAS D P. Constrained optimization and Lagrange multiplier methods[M]. Boston:Academic Press, 1982.
[13] DEMIRLI R, SANIIE J. Model-based estimation of ultrasonic echoes. Part I:Analysis and algorithms[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2001, 48(3):787-802
[14] QI A L, ZHANG G M, MING D, et al. An artificial bee colony optimization based matching pursuit approach for ultrasonic echo estimation[J]. Ultrasonics, 2018, 88(4):1-8
[15] FANG Z, HU L, QIN L, et al. Estimation of ultrasonic signal onset for flow measurement[J]. Flow Measurement and Instrumentation, 2017, 55(6):1-12
[16] 王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究[J]. 物理学报, 2018, 67(21):65-77

官方申博在线娱乐城 淘金盈娱网址 正规博彩十大网站排名 网上娱乐场网址大全 百家乐客户端下载
云顶现金网站 澳门葡京网址多少 pc蛋蛋幸运28网站 凯撒皇宫彩票app官方版 澳门巴黎人如何开户
申博太阳城官网下载网址 澳门巴黎人现金网注册 缅甸皇家国际赌场 菲律宾申博太阳岛 87申博登入
威尼斯人网上注册 澳门太阳城现金网娱乐 太阳城集团真人赌场游戏 彩天堂娱乐 现金真人牌九